Verification of RNN-Based Neural Agent-Environment Systems

Michael E. Akintunde, Andreea Kevorchian, Alessio Lomuscio, Edoardo Pirovano
Department of Computing, Imperial College London, UK

Abstract

We introduce agent-environment systems where the agent
is stateful and executing a ReLU recurrent neural network.
We define and study their verification problem by providing
equivalences of recurrent and feed-forward neural networks
on bounded execution traces. We give a sound and complete
procedure for their verification against properties specified
in a simplified version of LTL on bounded executions. We
present an implementation and discuss the experimental re-
sults obtained.

1 Introduction

A key obstacle in the deployment of autonomous systems is
the inherent difficulty of their verification. This is because
the behaviour of autonomous systems is hard to predict; in
turn this makes their certification a challenge.

Progress has been made over the past few years in the
area of verification of multi-agent systems where a num-
ber of methods based on model checking and theorem prov-
ing have been put forward (Alechina et al. 2010; Lomuscio,
Qu, and Raimondi 2017; Kouvaros, Lomuscio, and Pirovano
2018). Some of this work has been combined with safety
analysis and abstraction thereby resulting in the assessment
of designs such as autonomous underwater vehicles (Ezekiel
etal. 2011).

A key assumption made in the literature on autonomous
systems is that their designs have been traditionally imple-
mented by engineers. But parts of Al systems are increas-
ingly realised by machine learning, thereby making present
verification approaches not applicable. For example, vision
systems currently being tested in autonomous vehicles make
use of special classes of feed-forward neural networks to
classify the environment at runtime (Redmon et al. 2016). It
follows that, to be able to verify and certify forthcoming au-
tonomous systems, methods for the verification of systems
based on neural networks are urgently required.

In this paper we develop a novel method for the veri-
fication of closed-loop systems of one agent, based on a
neural network, interacting with an environment. Specifi-
cally, we study systems in which the agent is memoryful

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and realised via a previously trained recurrent neural net-
work (Hausknecht and Stone 2015). As we discuss below,
we are not aware of other methods in the literature address-
ing the formal verification of systems based on recurrent
networks. The present contribution focuses on reachability
analysis, that is we intend to give formal guarantees as to
whether a state, or a set of states are reached in the system.
Typically this is an unwanted state, or a bug, that we intend
to ensure is not reached in any possible execution. Similarly,
to provide safety guarantees, this analysis can be used to
show the system does not enter an unsafe region of the state
space.

The rest of the paper is organised as follows. After the
discussion of related work below, in Section 2, we introduce
the basic concepts related to neural networks that are used
throughout the paper. In Section 3 we define Recurrent Neu-
ral Agent-Environment Systems and define their verification
decision problem. In Section 4 we show that for verification
purposes recurrent networks can be simulated by simpler
feed-forward networks as long as the analysis is on bounded
executions. We exploit this in Section 5 where we provide a
complete (up to bounded executions) procedure for the ver-
ification of recurrent neural agent-environment systems. We
give details of an implementation of the approach in Sec-
tion 6, where we benchmark the procedures previously in-
troduced.

Related Work. As mentioned above, there is a large litera-
ture on verification of agent-based systems. With the excep-
tions mentioned below, differently from this paper, this body
of work deals with agents that are designed by using declar-
ative or procedural programming languages. Therefore their
aims and techniques are different from ours.

There has been recent work on the formal verification of
feed-forward networks. This was first explored in (Pulina
and Tacchella 2010), which addressed sigmoid activation
functions, and could be scaled up to approximately 20 neu-
rons. More recently, (Katz et al. 2017; Lomuscio and Mag-
anti 2017; Ehlers 2017; Bunel et al. 2017; Gehr et al. 2018;
Ruan, Huang, and Kwiatkowska 2018) considered ReLLU ac-
tivation functions, as we do here, but differently from the
present contribution, all previous analyses are limited to
feed-forward networks and purely reachability conditions.
Instead, our contribution focuses on systems based on re-

current neural networks specified in a restricted version of
LTL. Further recent work on verification of neural networks
focuses on adversarial examples, e.g., (Huang et al. 2017),
and has different aims from those here pursued.

Much closer to the work here presented is (Akintunde et
al. 2018), where a verification method for reachability in
closed-loop systems controlled by a ReLU feed-forward net-
work is presented. In contrast with this work, we here focus
on recurrent neural networks, which require a different theo-
retical treatment. We take up the model introduced there of a
neural agent-environment system, and modify it by introduc-
ing agents based on recurrent networks. The implementation
here presented uses the module released in (Akintunde et al.
2018) for the verification of feed-forward networks, but ex-
tends it by supporting agents defined on recurrent networks
as well.

2 Preliminaries

In this section we introduce our notation for neural networks
that will be used throughout the rest of the paper. We as-
sume the basic definition of a neural network and related
notions (Haykin 1999).

Feed-forward neural networks. Feed-forward neural
networks are a simple class of neural networks consisting of
multiple hidden layers and admitting no cycles. The presen-
tation here loosely follows that in (Akintunde et al. 2018).

Definition 1. An n-layer feed-forward multilayer neural
network (FFNN) N is a neural network resulting from the
composition of n layers, each denoted by LW for1<i<
n. Each layer L) is defined by a weight matrix W®), a
bias vector bV, and an activation function o(*). We refer to
LM as the input layer of the network, and L(™ as the out-
put layer. Any additional layers which lie between these two
layers are referred to as hidden layers.

Each layer of the network is composed of nodes, in which
computations combine the output of nodes in the previous
layer to produce an output. This output is then used in the
computations of nodes in successive layers.

We only consider fully-connected neural networks where
all the nodes in each layer have a connection to every node
in the adjacent layers (with the exception of the input and
output layers L(Y) and L(™), which intuitively are only con-
nected to layers L(?) and L™~ 1 respectively).

Each node in each hidden layer has an associated acti-
vation function, which applies a transformation to a linear
combination of the values of the input (incoming) nodes.
This quantity defines the value of the node, which is then
passed into a subsequent node.

We only consider networks with hidden layers utilising
Rectified Linear Unit (ReLU) activation functions, defined
by ReLU(z) £ max(0,z), where = represents the linear
combination of values from incoming nodes in the previ-
ous layer. Here the value of the node is the output of the
ReLU function. ReL.U activation functions are widely used
and are known to allow FFNNs to generalise well to unseen
inputs (Nair and Hinton 2010).

Neural networks are generally used to learn highly non-
linear, non-programmatic functions; upon training, the net-
work computes an approximation of such a function by
means of the weights and biases learned.

Definition 2 (Function computed by FFNN). Let NV be a
FFNN. For each layer L") of N, let ¢ and d denote respec-
tively the number of inputs and output nodes of layer 7. We
define the computed function for L"), denoted f(*) : R —
R4, by f)(z) = ¢ (WO 4b®). Further, for an m-layer
FFNN N with p input nodes and ¢ output nodes, the com-
puted function for N as a whole, f : RP? — RY, is defined as

Fla) = f (DL (fO (@)

Recurrent neural networks. Recurrent neural networks
(RNNs) are known to be difficult to train and whose be-
haviour is difficult to predict. Differently from FFNNs,
whose output is always the same given a certain single in-
put, RNNs were designed to process sequences of data, and
are equipped with a state that evolves over time. As a result,
the behaviour of an RNN depends on the history of their in-
puts. We formalise this below.

Definition 3. A single-layer recurrent neural network
(RNN) R with h hidden units and input size i and output size
o is a neural network associated with the weight matrices
Wi_n € RiXh, Whn € R"*h and Whoo € tho’ and the
two activation functions o : R — R" and ¢’ : R° — R°.

The weight matrix W;_,;, defines the weights of the con-
nections between input units and hidden units, W},_,;, de-
fines the weights of the connections between hidden units,
and Wj,_,, defines the weights of the connections between
hidden units and output units. We refer to the value of the
hidden units as the state of the network, due to the self-loop
introduced by W, _, . The activation function o is applied to
the state before it is passed onto the next time step, and ¢’ is
applied to the state of the network at a given time step, in or-
der to compute the output of the network at that time step. In
what follows, we only consider ReLU activation functions
for o and o’.

Definition 4 (Function computed by RNN). Let NV be an
RNN with weight matrices W, _, Wy and Wj,_,,. Let
7 € (R¥)™ denote an input sequence of length n where each
element of the sequence is a vector of size k, with Z; denot-
ing the t-th vector of Z. We define h¥ = 0 as a vector of 0s.
For each time step 1 < ¢ < n, we define:

hi = c(Whonhi_ + Wisn@y).

Then, the output of the RNN is given by f(z) =
U/(Whﬁth).

The ability of RNNs to recall information from previous
time steps has traditionally made them useful in language-
related tasks such as text prediction (Sutskever, Martens, and
Hinton 2011). However, since they define a stateful compo-
nent, they can be taken as a basis for a stateful agent as we
do in the next section.

3 Recurrent Neural Agent-Environment
Systems

We introduce recurrent neural agent-environment systems
(RNN-AES). RNN-AESs are an extension of the neural
agent-environment systems introduced in (Akintunde et al.
2018) which are defined on feed-forward neural networks
instead.

An RNN-AES is a closed-loop system comprising an en-
vironment and an agent. The environment is stateful and up-
dates its state in response to the actions of the agent. The
agent is implemented by an RNN and chooses the next ac-
tion on the basis of a sequence of (possibly incomplete) ob-
servations of the environment. We begin by defining the en-
vironment.

Definition 5 (Environment). An environment is a tuple E =
(S,0,0,tg), where:

e S is a set of states of the environment,
e (O is a set of observations of the environment,

e 0 : S — O is an environment observation function that
given an environment state returns an observation of it that
agents can access,

e tp:Sx Act — S is atransition function which given the
current state of the environment and an action performed
by the agent returns the next state of the environment.

Notice that if we wish to have a fully observable envi-
ronment, we can take O = S and o = id, but the above
framework also allows us to have a partially observable en-
vironment by taking some O # id.

We assume that the environment’s observation and tran-
sition function are linearly-definable. If they are not, they
can be linearly approximated to an arbitrary level of preci-
sion. See, e.g., (Akintunde et al. 2018; D’ Ambrosio, Lodi,
and Martello 2010) for a discussion on this.

We now proceed to define a recurrent neural agent, which
performs actions on the environment on the basis of its past
observations of it, and the current observation.

Definition 6 (Recurrent Neural Agent). A recurrent neural
agent, or simply an agent, denoted Agt , acting on an envi-
ronment F is defined by an action function act : O* — Act,
which given a finite sequence of environment observations
from O C R™ returns an action from a set Act = R"™ of
admissible actions for the agent. The function act is imple-
mented by a ReLU-RNN N with m inputs and n outputs
computing a function f : (R™)* — R", i.e. act(e) = f(e).

We now proceed to define a recurrent neural agent-
environment system, which is a closed-loop system of an en-
vironment composed with an agent acting on it.

Definition 7 (RNN-AES). A recurrent neural agent-

environment system (RNN-AES) is a tuple AES =

(E, Agty, I) where:

e £ = (S5,0,0,tg) is an environment with corresponding
state space S, observation space O, observation function
o and transition function ¢ g,

e Agty is a recurrent neural agent with corresponding ac-
tion function act : O* — Act,

e] C S is a set of initial states for the environment.

We will assume that the set of initial states for the environ-
ment is linearly definable, or has been linearly approximated
to a suitable degree of accuracy.

An RNN-AES is a general model that can be used to en-
code agents implemented by RNNs interacting with an envi-
ronment. For example, recurrent controllers in power-plant
scenarios can be modelled in this framework.

We would like to verify RNN-AESs against temporal
specifications. To do so, we first describe how the system
evolves at each time step.

Definition 8 (System evolution). Given an RNN-AES sys-
tem AES = (F,Agtn,I), we say that AES evolves
to state y € S from initial state * € S after

n € N steps if tg)(x) = 1y where tglJ’l)(x)

et (@), FoD (@) ... ot (2)))) for n > 1 and

tg) () = x denotes the repeated application of the tran-
sition function ¢z, and where f denotes the neural action
function of the agent Agty.

We use II to denote the set of all infinite paths. For a path
p € TI, we use p(i) to denote the ith state in p and p; to
denote the subset of the path obtained by omitting the first ¢
states.

We now introduce the specification language that we will
use to reason about RNN-AESs. Our specifications are in-
spired by Linear Temporal Logic (Pnueli 1977) and are in-
dexed by a natural number representing the number of time
steps up to which the temporal modalities need to be satis-
fied.

Definition 9 (Specifications). For an environment with state
space S = R™, the specifications ¢ are defined by the fol-
lowing BNF.

¢ == XFC|cUskC
Cu=CVClz<ylz>yla=y
lz#ylz<ylz>y
forz,y € RU{zp,..., 2z} and k € N.

The temporal formula X*C is read as “after k time steps
it is the case that C”. The formula C;U=FC, is read as “Cs
holds within k& time steps and C; holds up to then”. A con-
straint C holds at a given time step if the state of the en-
vironment at that time step satisfies it. Notice we can have
a disjunction of constraints but not a conjunction since our
procedure will need the negation of the constraint to be lin-
early definable.

Observe that we use linear constraints on the state of the
environment as the only atomic propositions and do not have
nesting of temporal operators. Given a constraint C, we will
use C to denote the constraint obtained by negating it (this
will be a conjunction of linear constraints).

For example, consider an environment with state space
S = [0,100] giving the position of a cart on a track. We can
express the specification that after 5 time steps the cart will
be at a distance of at most 10 from the start of the track by
the formula X°(z¢ < 10).

We now define the satisfaction relation.

Definition 10 (Satisfaction). Given a path p € II on an
RNN-AES and a formula ¢, the satisfaction relation = is
defined as follows (we omit all but one of the cases for con-
straints since they are all similar):

pECLVCs iff pECiorpl=Coy

pEz<y iff the state po satisfies the
constraint x < y;
p = XkC iff p(k) =C;

p ECUSkC, iff there is some i < k such

that p(i) = C2 and p(j) =
C; forall j < 1.

We say that an agent environment system AFE.S satisfies
a formula ¢ if it is the case that every path originating from
an initial state ¢ € I satisfies ¢. We denote this by AES =
¢. This is the basis of the model checking problem that we
consider in this paper, which we formalise below.

Definition 11 (Model Checking). Given an RNN-AES
AFES and a formula ¢, determine if it is the case that
AES = ¢.

The remainder of the paper will be dedicated to obtaining
a sound and complete verification procedure for this deci-
sion problem.

4 Unrolling of RNNs

Agents in RNN-AESs are stateful and implemented via
RNNS (see Definition 3). To provide a method for the veri-
fication of RNN-AESs against the temporal language intro-
duced in the previous section, we show an equivalence result
with FFNNs on finite paths. This enables us to frame veri-
fication of RNN-AESs in terms of reachability properties of
specific FFNNs. Once this is in place we will be able to ex-
ploit existing results on the verification of FFNNs (Katz et
al. 2017; Ehlers 2017; Lomuscio and Maganti 2017).

At the essence of our method is the notion of unrolling.
Specifically, we unroll the recurrent loop in an RNN into
an FFNN and show the latter is equivalent to the former on
paths whose length is dependent on the unrolling considered.

We consider two similar but distinct ways of unrolling the
RNN: Input on Start and Input on Demand.

Input on Start (I0S). In this method, all the input values
are initially scaled according to the weights of the W,_,)
matrix. Then, at the time step when the input is needed it is
passed unchanged to the corresponding hidden unit.

Before defining this construction, we introduce some no-
tation. We denote by I, the a x a identity matrix, by O,
the a x b zero matrix, and by A ® B is the Kronecker prod-
uct (Brewer 1978) of matrices A and B defined by:

(A® B)ij =A|(i-1)/p)+1,1(i-1)/a) +1
" Bli—1)%p+1,G-1)%q+1

where |a| defines the floor of a and a%b represents the re-
mainder of a/b.

Now, we can proceed to define the construction of our
unrolling. This is shown visually in Figure 1a. We formalise
the construction in the definition below.

Definition 12. Let R be an RNN with weight matrices
Wiissny» Win—ny and W, _,0y. Let n € Z7 be the length of
a sequence of inputs. Then, the FFNN R,,, called the length
n unrolling of R, is defined by assigning to each layer the
weights:

W(l) = Is & W(i—)h)a

w® — | Waon O, -]
I(s—1) ® L)
forl € {2,..,n},
W+l — Wins0)-

Notice that the input layer of the network applies the
transformation defined by W(;_,) to the input data. The hid-
den layers each take in another element of the transformed
input data and combine it with the existing state using the
weights in W;_,p,). Finally, the output layer applies the
transformation given by W, ;).

We now show that given an RNN R, the FFNN R,, con-
structed by following Definition 12 is an appropriate abstrac-
tion. Specifically, the outputs produced by R,, are the same
as those produced by R on any input sequence of length n.

Theorem 1. Let f : (R*)™ — RY denote the function com-
puted by R and g : R*™ — RY denote the function com-
puted by R,,. Then, for all z € (R*)™, it is the case that

f(@) = 9((Zo0, -+, Tan))-

Proof sketch. The proof relies on showing that the output of
layer k of the FENN for k < n is equal to the value of A} in
Definition 4. Then, the output of layer n + 1 corresponds to
the output of the RNN. O

Input on Demand (IOD). This unrolling method differs
from the IOS method by passing on the input unchanged to
the hidden units, rather than transforming the input at the
start. This is illustrated in Figure 1b.

Definition 13. Let R be an RNN with weight matrices
W(iﬁh), W(hﬁh) and W(hﬁo). Let n € Z* be the length
of sequences that we wish to consider. Then, the FFNN R/ ,
called the length n unrolling of R, is defined by assigning to
each layer the weights:

w = | Wi-n O\11. 11(s-1)
(11s—1). 1= Aj1s-1)
" Wansny Ol nis—i-1)
W = Wiiosn) |11, 17|(s—i~1)
O(r(s—1-1). 11 j11(s=1-1)
forl € {2,..,n},
W(n+1) = W(h—w)-

Notice that in this case the input layer applies the transfor-
mation given by W;_,) to the first element of the sequence,
and passes the rest of the sequence along unchanged. Each
hidden layer then applies W(;_,) to another element of the
sequence and combines this with the existing state using
W (n—n)- Finally, the output layer applies the transformation
given by W,).

0O)

T

(a) Input on Start

0O)

OO0 6

(b) Input on Demand

Figure 1: FFNN constructed from an example RNN with an input sequence of length 4, input size of 2, 3 hidden units and
output size 1. Note that the layers are fully connected but 0-weight connections are omitted from the image for clarity. Brown
connections represent weights from the RNN, with dashed lines from W;_,), solid lines from W(;,_,), and dotted lines from

W(n-0)- Black lines represent a weight of 1.

As for 10S, we now show that the IOD construction also
produces an appropriate abstraction which is behaviourally
equivalent to the original RNN for input sequences of length
n.

Theorem 2. Let f : (R*)™ — RY denote the function com-
puted by R and g : R*™ — RY denote the function com-
puted by R/,. Then, for all Z € (R*)™, it is the case that

f(@) = 9((Zo0,- -+ Tan))-

Proof. The proof is similar to that of Theorem 1. O

5 Verification of RNN-AESs

Having defined a sound unrolling of RNNs, we now show
how to use this to verify RNN-AESs against the specifica-
tions previously introduced. Since both unrolling methods
are correct, in the following we assume to fix one of the two.
Their relative performance will be evaluated later.

The verification procedure defined in Algorithm 1 reduces
the model checking problem for RNN-AESs to an instance
of a mixed integer linear programming (MILP) problem. A
MILP problem concerns finding a solution to a set of linear
constraints on integer, binary or real-valued variables. We
do not formalise the problem or methods that exist to solve it
here as this is tangential to our work. For further information
on MILPs, we refer the reader to (Winston 1987). It has been
shown previously (Katz et al. 2017; Ehlers 2017; Lomuscio
and Maganti 2017) that an [-layer FFNN N can be encoded
as a set of linear constraints C'y on continuous variables T €
R™ and § € R™ and binary variables A = U._,5(") with
6 ¢]B%Lm, such that C'y is satisfiable when substituting
in Z and g iff f(Z) = §. We assume the existence of A in
a MILP encoding of an FFNN N, and omit it for brievity in
the rest of our discussion.

Our procedure is shown in Algorithm 1. It takes as input
an RNN-AES and a specification and returns whether the
specification is satisfied on the system.

We use X [Z, 7] to denote a set of constraints X with the
variable Z renamed to 3. We use SAT to denote a function
checking whether a set of linear constraints passed as its ar-
gument is satisfiable.

We assume that the transition function is given by a set of
linear constraints C; on the variables T (the current state), a
(the action performed by the agent) and ¢ (the next state).
We also assume the observation function is given by the set
of linear constraints C, on T and o. Finally, we assume that
the function computed by each R,, is given by a set of linear
constraints C'r,, on 0 and a,.

For a formula X*C, for each step n from 0 to k the al-
gorithm adds constraints corresponding to the observation
function, the unrolling of length n of the RNN and the tran-
sition function of the environment. The constraint problem
will then be satisfied precisely by states that are possible af-
ter k£ time steps. Then, the procedure checks whether it is
possible for C to be satisfied in any of these states, and re-
turns a result accordingly.

The algorithm for C; U=FC, is similar, except that at each
time step n we check whether it is the case that Cs is always
satisfied. If this is the case, we can return True. If this is
not the case then we continue from the states that did not
satisfy Co. We first check that these all satisfy C;. If this is
not the case, we can return False. If it is the case, then we
continue to the next time step. If we have reached k£ time
steps and still have not returned a result, then there are paths
of length k for which no state satisfies Co. So, we return
False.

We now proceed to prove the correctness of this algo-
rithm.

Theorem 3. For every RNN-AES AFES and formula ¢, Al-
gorithm 1 returns True iff AES |= ¢.

Proof sketch. We first prove the case for ¢ = X*C. Sup-
pose that the algorithm returns False. Then it follows, that

Algorithm 1 Verification Procedure

Input: RNN-AES AFES; formula ¢
Output: True/False

1: C«+ C[
2: switch ¢ do
3: case X*C
4: for n < O until k& do
5: C <+ C[z,%,) U C,[T, T, [0, 0n]
6: C + CUCR, UGz, 2,][a,an][y,]
7: end for -
8: return -~ SAT({C} U C)
9: case C;U=FC,
10: for n < O until k£ do
11: C + CU{Cs}
12: if = SAT(C) then
13: return True
14: endif
15: if SAT({C;} U C) then
16: return False
17: end if
18: C + C[z,%,) UC,[Z, T, [0, 0n]
19: C + CUCR, UCz, Z][a,an][7, 7]
20: end for
21: return False

on Line 8 we found a satisfying assignment for the con-
straint problem {C} U C'. Notice that since this satisfies
the constraints added to C' in Line 5 and 6, it is a length
k path of the system (this follows from the unrolling be-
ing valid, as proved in Theorems 1 and 2). Notice also that
since the final state satisfies C, it gives a counter-example for
AES |= X*C. Hence, we have AES [~ ¢, as desired. Con-
versely, note that if we returned True then no such path can
exist (since otherwise it would give a satisfying assignment
for the constraints), so AES = ¢.

Now, let ¢ = C;US*C,. Suppose we return False on
Line 16 on the nth iteration of the loop. Then, we found
that {C; } U C has a satisfying assignment. It can be checked
that the constraints added to C' in Line 18 and 19 force this
to be a valid path of length n, and the constraints added on
Line 11 force that C, did not hold in the first n states of the
loop. Finally, the constraint C; means that C; does not hold
in the nth state. So, this path proves that AES [~ ¢. If we
returned False on Line 21, then on the kth iteration of the
loop, we must have found a satisfying assignment for C on
Line 12. Notice this gives a path of length k along which Cs
is never satisfied, proving that AES [~ ¢. Finally, suppose
we returned True on Line 13. Then, we could not find an
assignment for C' on the nth iteration of the loop for some
n < k. Notice this means that along every path of length
n, we reach a state satisfying C,, and do not reach a state
satisfying C; before this (otherwise we would have returned
on Line 16). This shows that AES = ¢. O

Having proved the validity of our method, we now pro-
ceed to present an implementation of it.

6 Implementation and Evaluation

We implemented the methods described in the previous
sections into an experimental toolkit, called RNSVER-
IFY (RNSVerify 2018), thereby automating the unrolling
procedures described in Section 4 as well as the verifica-
tion procedure described in Algorithm 1. RNSVERIFY anal-
yses an RNN-AES AFE'S, which is composed of a recurrent
neural agent, a linearly approximated environment, and a
linearly defined set of initial states. RNSVERIFY supports
specifications from Definition 9. The number of steps to be
considered and the choice of the unrolling method are passed
to the tool as additional parameters.

RNSVERIFY is written in Python and uses Gurobi
ver. 7.5.2 (Gu, Rothberg, and Bixby 2016) as its underlying
MILP solver. Our use of Gurobi is motivated by its attractive
performance in various benchmarks (Mittelmann 2018).

Upon invocation the agent’s RNN is unrolled into an
FFNN (as described in Section 4) and the resulting linear
constraints for the network are added to a MILP as described
in the encoding given in (Akintunde et al. 2018), along with
the encoding for the environment and the state transitions,
as described in Section 5.

The tool outputs True if the property holds in the AES,
or False if it does not. If the output is False, the tool
also returns a counter-example for the formula in the form
of a trace of states and actions for the agent.

In order to evaluate our implementation and its scalabil-
ity, we consider the Open Al task Pendulum-vO (OpenAl
2018). The objective of the task is for an agent to learn
how to keep a pendulum upright by applying small rota-
tional forces at each time step. For the agent, we used Q-
Learning (Watkins and Dayan 1992) to train a ReLU-RNN
with 16 hidden units using the open source deep learning
toolkit Keras ver. 2.2.2 (Chollet 2015). The weights of the
RNN were initialised as described in (Le, Jaitly, and Hinton
2015). The environment was linearly approximated using a
ReLU-FFNN as described in (Akintunde et al. 2018).

In order to utilise a Q-Learning approach, we discretised
the action space of the agent such that it may only pro-
duce forces contained in the set {—1,1}, i.e., only a pos-
itive or negative force of equal magnitude. At each time
step k, the network takes as input a sequence of states in
the form [(6o,00),. .., (0k—1,0k—1)], where at each time
step 0 represents the current angle of the pendulum and 6
represents its angular velocity, and outputs two Q-values
[¢1, 2] To convert back into action space, we take the index
iq = argmax([qg1, g2]) and apply a force of —1 if ¢, = 0 or
a force of 1 if i, = 1 to compute the environment state for
the next time step.

Let (6;, ;) denote the initial state of the environment and
let (67, 67) denote the final state of the environment after
n time steps. We fix a set of initial states with 0 < 6; <
w/64 and 0 < 6; < 0.3, i.e., the pendulum begins possibly
off-centre to the right and with an angular velocity taking it
possibly further to the right.

We checked the property ¢ = X™(0; > —e) for different
positive values of € and a variable number of steps n. Our
results are recorded in Table 1, along with the time needed

3

7/10 x/30 «/50 w/70

1] 0.056s 0.067s 0.011s 0.014s
2 1 0.052s 0.179s 0.138s 0.197s
31 0.372s 0.904s 5.794s = 0.552s
n 4 | 2.578s 7.222s | 0.378s 0.368s
51 20.57s 31.07s 0.748s 0.663s
6 | 73.97s 3.264s 31.07s 23.99s
7 | 54.30s | 96.54s 116.8s 207.8s
8 | 693.2s 2949s 239.8s 243.3s

(a) Input on Start
e

7/10 x/30 «/50 w/70

1] 0.004s 0.012s 0.011s 0.014s
2 | 0.060s 0.114s 0.244s 0.253s
31 0.247s 1.068s 6.092s = 0.125s
n 4 1 2.176s 5.359s @ 0.182s 0.198s
5] 10.04s 0.293s 0.317s 0.294s
6 | 13.99s 0.367s 0.357s 0.359s
7 1 31.93s 0.497s 0.488s 0.478s
8 | 0.689s 0.660s 0.696s 0.703s

(b) Input on Demand

Table 1: The results of checking the property X™ (0 > —¢)
after n steps using the I0S and IOD unrolling methods
for different values of € and n. Greyed out cells indicate a
False result and white ones a True result. The time in the
cell indicates the time Gurobi took to solve the correspond-
ing MILP problem constructed by RNSVERIFY.

to obtain these results on a machine running Linux kernel
3.16 on an Intel Core 15-3320M CPU with 4GB of RAM.

Notice this property is true precisely if after n time steps it
is always the case that the pendulum is not more than ¢ to the
left of the vertical (i.e,. ; = 0). When the property is false,
the tool provides a trace showing the agent failing to satisfy
the property, i.e., causing the pendulum to fall more than ¢
to the left of the vertical. For instance, whenn = 3 and ¢ =
/70, the tool returns a trace starting from the initial state
(0,0) where the agent repeatedly applies a force of —1 to
bring the pendulum to the final state (—0.046, —0.472). We
see from this that the agent does not attempt to apply a force
to move the pendulum in an opposite direction in order to
keep the pendulum upright, but rather allows it to continue to
fall. This highlights a case where the agent does not behave
as desired. Following this the agent could be retrained and
further verification conducted.

All our test results confirmed the correctness of the im-
plementation. Further, note from the timing results that the
IOD unrolling method performs better than IOS in all cases,
with the difference being particularly noticeable for large
values of n. This is likely due to the fact that, as shown in
Table 2, the constraint problems constructed by RNSVER-
IFY have more variables and constraints in them and, ac-
cordingly, take Gurobi longer to solve. The performance of
our experimental tool is promising and scales well with the

Input on Start | Input on Demand
v C v C
273 336 273 336
736 736 620 766
1455 1806 | 1055 1306
2494 3101 | 1590 1971
3917 4876 | 2237 2776
5788 7211 | 3008 3736
8171 10186 | 3915 4866
11130 13881 | 4970 6181

[IS o NI, I R UVI O R

Table 2: For different values of n, the size of the constraint
problem constructed by RNS VERIFY in terms of number of
variables (V) and constraints (C) when checking the prop-
erty X™ (8 > —e) using the IOS or IOD unrolling method.

number of steps.

7 Conclusions

As we argued in the Introduction, recent developments of
autonomous and robotic systems, in which neural networks
are used in parts of the architecture, make the formal verifi-
cation of the resulting systems very challenging. In this pa-
per we have developed a method for the formal verification
of systems composed by a stateful agent implemented by an
RNN interacting with an environment. We have introduced
a semantics supporting this closed-loop system, defined and
solved the resulting verification problem. The method re-
lies on unravelling RNNs into FFNNs and compiling the
resulting verification problem into a MILP. We showed the
method is sound, complete and effective for controllers of
limited complexity.

The method is novel and addresses a presently unsolved
problem as no method for verifying RNNs or agents based
on them currently exists. In the future we intend to address
some limitations of our approach to make it suitable for veri-
fying real-life autonomous systems. Firstly, we intend to im-
prove on the present solutions for the verification step. This
is presently implemented in MILP, but there is no reason it
should not be carried out in SMT (Barrett et al. 2011), or
by combining approaches to improve its performance. Sec-
ondly, we intend to develop the toolkit RNSVERIFY further
by adding a modelling language for the agents and the envi-
ronment.

8 Acknowledgements

Alessio Lomuscio is supported by a Royal Academy of En-
gineering Chair in Emerging Technologies. This work is
partly funded by DARPA under the Assured Autonomy pro-
gramme. Nuri Cingillioglu’s help on training recurrent neu-
ral networks is gratefully acknowledged. The authors are
grateful to Giuseppe De Giacomo for extensive comments
on a previous version of this paper.

References

Akintunde, M.; Lomuscio, A.; Maganti, L.; and Pirovano, E.
2018. Reachability analysis for neural agent-environment
systems. In Proceedings of the 16th International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KRI18), 184—193. AAAI Press.

Alechina, N.; Dastani, M.; Khan, F.; Logan, B.; and Meyer,
J.J. C. 2010. Using theorem proving to verify properties of
agent programs. In Specification and Verification of Multi-
agent Systems. Springer. 1-33.

Barrett, C.; Conway, C.; Deters, M.; Hadarean, L.; Jo-
vanovi¢, D.; King, T.; Reynolds, A.; and Tinelli, C. 2011.
CVCA4. In Proceedings of the 23rd International Conference
on Computer Aided Verification (CAVI1), volume 6806 of
Lecture Notes in Computer Science, 171-177. Springer.

Brewer, J. 1978. Kronecker products and matrix calculus in
system theory. IEEE Transactions on Circuits and Systems
25(9):772-781.

Bunel, R.; Turkaslan, I.; Torr, P. H. S.; Kohli, P.; and Kumar,
M. P. 2017. Piecewise linear neural network verification: A
comparative study. CoRR abs/1711.00455v1.

Chollet, F. 2015. Keras. https://keras. io.

D’ Ambrosio, C.; Lodi, A.; and Martello, S. 2010. Piecewise
linear approximation of functions of two variables in milp
models. Operations Research Letters 38(1):39-46.

Ehlers, R. 2017. Formal verification of piece-wise linear
feed-forward neural networks. In Proceedings of the 15th
International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA17), volume 10482 of Lecture
Notes in Computer Science, 269-286. Springer.

Ezekiel, J.; Lomuscio, A.; Molnar, L.; and Veres, S. 2011.
Verifying fault tolerance and self-diagnosability of an au-
tonomous underwater vehicle. In Proceedings of the 22nd

International Joint Conference on Artificial Intelligence (1J-
CAIll), 1659-1664. AAAI Press.

Gehr, T.; Mirman, M.; Drachsler-Cohen, D.; Tsankov, P.;
Chaudhuri, S.; and Vechev, M. 2018. AI%: Safety and ro-
bustness certification of neural networks with abstract inter-
pretation. In 2018 IEEE Symposium on Security and Privacy
(S&P18), 948-963.

Gu, Z.; Rothberg, E.; and Bixby, R. 2016. Gurobi optimizer
reference manual. http://www.gurobi.com.

Hausknecht, M., and Stone, P. 2015. Deep recurrent g-
learning for partially observable mdps. In AAAI Fall Sympo-
sium on Sequential Decision Making for Intelligent Agents
(AAAI-SDMIA15). AAAI Press.

Haykin, S. S. 1999. Neural Networks: A Comprehensive
Foundation. Prentice Hall.

Huang, X.; Kwiatkowska, M.; Wang, S.; and Wu, M. 2017.
Safety verification of deep neural networks. In Proceedings
of the 29th International Conference on Computer Aided
Verification (CAV17), volume 10426 of Lecture Notes in
Computer Science, 3-29. Springer.

Katz, G.; Barrett, C. W.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An efficient SMT solver

for verifying deep neural networks. In Proceedings of the
29th International Conference on Computer Aided Verifica-
tion (CAV17), volume 10426 of Lecture Notes in Computer
Science, 97-117. Springer.

Kouvaros, P.; Lomuscio, A.; and Pirovano, E. 2018. Sym-
bolic synthesis of fault-tolerance ratios in parameterised
multi-agent systems. In Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence and
23rd European Conference on Artificial Intelligence (IJCAI-
ECAIIS), 324-330. IICAL

Le, Q. V.; Jaitly, N.; and Hinton, G. E. 2015. A simple
way to initialize recurrent networks of rectified linear units.
CoRR abs/1504.00941.

Lomuscio, A., and Maganti, L. 2017. An approach to reach-
ability analysis for feed-forward relu neural networks. CoRR
abs/1706.07351.

Lomuscio, A.; Qu, H.; and Raimondi, E. 2017. MCMAS:
A model checker for the verification of multi-agent systems.
Software Tools for Technology Transfer 19(1):9-30.
Mittelmann, H. 2018. Benchmarks for Optimization Soft-
ware. http://plato.asu.edu/bench.html.

Nair, V., and Hinton, G. E. 2010. Rectified linear units
improve restricted boltzmann machines. In Proceedings
of the 27th International Conference on Machine Learning
(ICML10), 807-814. Omnipress.

OpenAl 2018.
https://gym.openai.com/envs/Pendulum-vO0/.

Pendulum-v0.

Pnueli, A. 1977. The temporal logic of programs. In Pro-
ceedings of the 18th International Symposium Foundations
of Computer Science (FOCS77), 46-57.

Pulina, L., and Tacchella, A. 2010. An abstraction-
refinement approach to verification of artificial neural net-
works. In Proceedings of the 22nd International Conference
on Computer Aided Verification (CAVI0), volume 6184 of
Lecture Notes in Computer Science, 243-257. Springer.

Redmon, J.; Divvala, S. K.; Girshick, R. B.; and Farhadi,
A. 2016. You only look once: Unified, real-time object
detection. The IEEE Conference on Computer Vision and
Pattern Recognition (CVPRI16) 779-788.

RNSVerify. 2018. Recurrent Neural System Verify, http:
//vas.doc.ic.ac.uk/software/ — also available
as supplementary material.

Ruan, W.; Huang, X.; and Kwiatkowska, M. 2018. Reach-
ability analysis of deep neural networks with provable guar-
antees. In Proceedings of the 27th International Joint Con-
ference on Artificial Intelligence and 23rd European Confer-
ence on Artificial Intelligence (IJCAI-ECAIIS), 2651-2659.
AAALI Press.

Sutskever, 1.; Martens, J.; and Hinton, G. E. 2011. Gener-
ating text with recurrent neural networks. In Proceedings
of the 28th International Conference on Machine Learning
(ICMLI11),1017-1024. Omnipress.

Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning. Ma-
chine learning 8(3—4):279-292.

Winston, W. 1987. Operations research: applications and
algorithms. Duxbury Press.

