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ABSTRACT
We analyse the verification problem for synchronous, per-
fect recall multi-agent systems with imperfect information
against a specification language that includes strategic and
epistemic operators. While the verification problem is unde-
cidable, we show that if the agents’ actions are public, then
verification is 2exptime-complete. To illustrate the formal
framework we consider two epistemic and strategic puzzles
with imperfect information and public actions: the muddy
children puzzle and the classic game of battleships.

1. INTRODUCTION
Synchronous, perfect-recall multi-agent systems (MAS)

are an important class of MAS that can be used to model
a wide variety of scenarios including communication proto-
cols, security protocols and games [8]. Reasoning about the
knowledge and the strategic ability of agents in these sys-
tems remains of particular importance. Traditionally, epis-
temic logic [8] has been used to express the states of knowl-
edge of the agents, whereas ATL has provided a basis for the
agents’ strategic abilities [1]. ATL and epistemic logic have
been combined in a number of ways to obtain specification
languages capable of expressing both concepts (see below).
A popular method for establishing properties of MAS is ver-
ification via model checking [4].

However, verifying synchronous, perfect recall MAS un-
der incomplete information against specifications in ATL
is undecidable [1, 6] (hence it remains undecidable when
epistemic modalities are added); it is therefore of interest
to identify cases in which reasoning about MAS is decid-
able. These restrictions typically take three forms: restrict-
ing the syntax of the logic (e.g., by removing strategic abil-
ities and consider, instead, LTLK, the extension of LTL with
individual-knowledge operators, as in [32]), restricting the
semantics (e.g., by requiring strategy quantifiers to vary
over memoryless-strategies [31]), or by restricting the class
of MAS under consideration. In this paper we follow the
third option.
Contribution. We identify a class of imperfect-information
concurrent game structures (iCGS) that we call public-action
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iCGS (PA-iCGS). In contrast to general iCGS [6], we prove
that model-checking the full logic ATL∗K,C,D on PA-iCGS is
decidable, specifically 2exptime-complete. Thus, the joint
complexity of model-checking is the same as that of ATL∗

with perfect information [1]. Morever, we show that the
class models MAS in which agents have imperfect informa-
tion, synchronous perfect recall, and whose actions are pub-
lic, i.e., all actions are visible to all agents. As we explain,
the class PA-iCGS captures games of imperfect information
in which the agents have uncertainty about the initial config-
uration but all moves are observable to all agents. This has
applications to, among others, games (e.g., Bridge, Poker,
Battleships, etc.), fair division protocols (e.g., classic cake
cutting algorithms), selected broadcast protocols [33], black-
board systems in which a public database is read and written
by agents [26], auctions and auction-based mechanisms [7].

The rest of the paper is organised as follows. In the re-
mainder of this section we discuss related work. In Section 2
we define iCGS with public actions and the logic ATL∗K,C,D,
that we will use as specification language and illustrate the
formalism. In Section 3 we present the main result of the pa-
per, i.e., we show the decidability of the verification problem,
by means of an automata-theoretic approach, and analyse
the resulting complexity. In Section 4 we compare our ap-
proach to that of Broadcast Environments [33]. We conclude
in Section 5.
Related Work. In order to reason formally about multi-
agent systems, temporal logics such as LTL, CTL, CTL∗ have
been extended with strategy quantifiers [1] and epistemic
modalities [14]. The extended syntax has been combined
with a number of different assumptions on the underlying
MAS: perfect vs. imperfect information, perfect vs. imper-
fect recall, state-based vs. history-based semantics [1, 14, 10,
31, 15, 5, 11, 25].

Assuming imperfect information and perfect recall, as we
do in this paper, often results in intractable model-checking.
For instance, the model-checking problem for ATL in this
setting is undecidable [6], as is the model-checking problem
for the extension LTLK,C of LTL with epistemic operators, in-
cluding common knowledge [32]. Given this difficulty, find-
ing decidable or tractable fragments remains of interest.

As expected, restricting the logic lowers the complexity.
We list some notable examples: the model-checking problem
for LTLK with only individual knowledge is non-elementary
complete [32], model-checking ATL with only “communicat-
ing coalitions” (i.e., coalitions use their distributed knowl-
edge instead of their individual knowledge) is decidable and
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non-elementary [5, 11]; and, model-checking ATL in which
all coalitions operate with a single indistinguishability rela-
tion reduces ATL to its singleton-coalition fragment [17].

Also, restricting the class of structures (iCGS) over which
these languages are interpreted lowers the complexity. Such
restrictions typically take one of two forms: i) on the obser-
vation or information sets of the agents; ii) on the the ar-
chitectures that govern communication. Notable examples
of i) may require that: all agents have the same observation
sets [21]; that the information sets form a hierarchy [27], or
that, over time, they infinitely often form a hierarchy [2].
A notable example of ii) are characterisations of the archi-
tectures for which distributed synthesis is decidable [9, 30],
thus generalising earlier results on linear architectures [27,
18].

More closely related to the present contribution are broad-
cast environments (which restrict the underlying iCGS) and
that can capture epistemic puzzles and games of imperfect
information such as Bridge [33]. The most relevant result for
broadcast environments is that synthesis of linear-temporal
logic with individual-knowledge operators is decidable [33].
Not only can our language express this synthesis problem,
but it is strictly more expressive, as it can alternate strate-
gic quantifiers mentioning overlapping coalitions. A detailed
discussion of the significance of [33] is given in Section 4.

Actions that constitute public announcements have been
studied in depth (Dynamic Epistemic Logic, Public An-
nouncement Logic, epistemic protocols [34]). However, this
line of research differs semantically and syntactically from
our work. In particular, in these works modal operators are
model transformers, and coalitions are not explictly named
in the language.

2. GAMES WITH PUBLIC ACTIONS AND
STRATEGIC-EPISTEMIC LOGIC

In this section we define the game model and the logic.
The model is the subclass of imperfect information concur-
rent game structures (iCGS) that only have public actions
(PA-iCGS). The logic is ATL∗K,C,D, an extension of Alternat-
ing Time Temporal Logic (ATL∗) which includes strategic
operators (〈〈A〉〉 for A ⊆ Ag) as well as epistemic opera-
tors for individual-knowledge (Ka for a ∈ Ag), common-
knowledge (CA for A ⊆ Ag), and distributed-knowledge (DA
for A ⊆ Ag).
Notation. For an infinite or non-empty finite sequence u ∈
Xω∪X+ write ui for the ith element of u, i.e., u = u0u1 · · · .
The empty sequence is denoted ε. The length of a finite
sequence u ∈ X∗ is denoted |u|, its last (resp. first) element
is denoted last(u) (resp. first(u)). Note that last(ε) =
first(ε) = ε. For i < |u| write u≤i for the prefix u0 · · ·ui.
For a vector v ∈

∏
iXi we denote the i-th co-ordinate of

v by v(i). In particular, for F ∈
∏
i(Xi)

Y we may write

F (i) ∈ XY and F (i)(y) ∈ Xi.

2.1 iCGS with only Public Actions
We begin with the standard definition of imperfect infor-

mation concurrent game structures [3, 6].

Definition 1 (iCGS). An imperfect information con-
current game structure (iCGS) is a tuple

S = 〈Ag,AP , {Acta}a∈Ag, S, S0, δ, {∼a}a∈Ag, λ〉

where:

• Ag is the finite non-empty set of agent names;

• AP is the finite non-empty set of atomic propositions;

• Acta is the finite non-empty set of actions for a ∈ Ag;

• S is the finite non-empty set of states;

• S0 ⊆ S is the non-empty set of initial states;

• δ : S × ACT→ S is the transition function, where the
set ACT of joint-actions is the set of all functions J :
Ag →

⋃
aActa such that J(a) ∈ Acta. The transition

function assigns to every state s and joint-action J , a
successor state δ(s, J);

• ∼a⊆ S2 is the indistinguishability relation for agent a,
which is an equivalence relation; the equivalence class
[s]a of s ∈ S under ∼a is called the observation set of
agent a;

• λ : AP → 2S is the labeling function that assigns to
each atom p the set of states λ(p) in which p holds.

Perfect-information is treated as a special case:

Definition 2 (perfect-information). A concurrent
game structure (CGS) is an iCGS for which ∼a= {(s, s) :
s ∈ S} for all a ∈ Ag.

We now give a brief and to-the-point definition of what
it means for an iCGS to only have public actions, i.e., all
actions are visible to all agents. This determines a subclass
of iCGS that we call PA-iCGS.

Definition 3 (PA-iCGS). An iCGS only has public
actions if for every agent a ∈ Ag, states s, s′ ∈ S, and
joint actions J, J ′ ∈ ACT, if J 6= J ′ and s ∼a s′ then
δ(s, J) 6∼a δ(s′, J ′). We write PA-iCGS for the class of
iCGS that only have public actions.

This definition says that if an agent a cannot distinguish
between two states, but different joint actions are performed
in each of these states (because, for instance, some other
agent can distinguish them), then the agent can distinguish
between the resulting successor states.

One way to generate an iCGS only having public actions
is to ensure that i) the state records the last joint-action
played, thus S is of the form T × (ACT ∪ {ε}), where ε
refers to the situation that no actions have yet been played,
and ii) the indistinguishability relations ∼a satisfy that if
(t, J) ∼a (t′, J ′) then J = J ′. Similar conditions have been
considered in the literature, e.g., recording contexts in [8].

In the remainder of this section we define what it means
for an agent to have synchronous perfect-recall [8].
Synchronous perfect-recall under imperfect informa-
tion. A path in S is a non-empty infinite or finite sequence
π0π1 · · · ∈ Sω ∪ S+ such that for all i there exists a joint-
action J(i) ∈ ACT such that πi+1 ∈ δ(πi, J(i)). Paths that
start with initial states are called histories if they are finite
and computations if they are infinite. The set of computa-
tions in S is written comp(S), and the set of computations in
S that start with history h is written comp(S, h). We define
hist(S) and hist(S, h) similarly.

We use the following notation: if ∼ is a binary relation
on S we define the extension of ∼ to histories as the binary
relation ≡ on hist(S) define by h ≡ h′ iff |h| = |h′| (i.e., syn-
chronicity) and hj ∼ h′j for all j ≤ |h| (i.e., perfect recall).
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We give three particular instantiations. If ∼a is the indis-
tinguishability relation for agent a, then we say that two
histories h, h′ are indistinguishable to agent a, if h ≡a h′.
For A ⊆ Ag, let ∼C

A= (∪a∈A ∼a)∗, where ∗ denotes the re-
flexive transitive closure (wrt. composition of relations), and
its extension to histories is denoted ≡C

A. For A ⊆ Ag, let
∼D
A= ∩a∈A ∼a, and its extension to histories is denoted ≡D

A.
Strategies. A deterministic memoryfull strategy, or simply
a strategy, for agent a is a function σa : hist(S) → Acta. A
strategy σa is uniform if for all h ≡a h′, we have σ(h) =
σ(h′). The set of uniform strategies is denoted Σ(S). All
strategies in the rest of the paper are uniform (although
sometimes we will stress this fact and write “uniform strat-
egy”).

For A ⊆ Ag, let σA : A → Σ(S) denote a function that
associates a uniform strategy σa with each agent a ∈ A. We
write σA(a) = σa, and call σA a joint strategy.

For h ∈ hist(S) write out(S, h, σA), called the outcomes of
σA from h, for the set of computations π ∈ comp(S, h) such
that π is consistent with σA, that is, π ∈ out(S, h, σA) iff
(i) π≤|h|−1 = h; (ii) for every position i ≥ |h|, there exists
a joint-action Ji ∈ ACT such that πi+1 ∈ δ(πi, Ji), and for
every a ∈ A, Ji(a) = σA(a)(π≤i). We may drop S and write
simply out(h, σA). Notice that, if A = ∅, then out(h, σA)
is the set of all paths starting with h (this is because σA
is the empty function and (ii) above places no additional
restrictions on the computations).

2.2 The Logic ATL∗K,C,D
In this section we define the logic ATL∗K,C,D. Its syntax has

been called ATEL* (cf. [14]), and we interpret it on iCGS
with history-based semantics and imperfect information.
Syntax. Fix a finite set of atomic propositions (atoms) AP
and a finite set of agents Ag. The history (ϕ) and path
(ψ) formulas over AP and Ag are built using the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | CAϕ | DAϕ | 〈〈A〉〉ψ
ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

where p ∈ AP , a ∈ Ag, and A ⊆ Ag.
The class of ATL∗K,C,D formulas is the set of history formu-

las generated by the grammar. The temporal operators are
X (read “next”) and U (read “until”). The strategy quantifier
is 〈〈A〉〉 (“the agents in A can enforce ψ”), and the epis-
temic operators are Ka (“agent a knows that”), CA (“it is
common-knowledge amongst A that”), and DA (“the agents
in A distributively know that”).
Semantics. Fix an iCGS S. We simultaneously define, by
induction on the formulas, (S, h) |= ϕ where h ∈ hist(S)
and ϕ is a history formula, and (S, π,m) |= ψ where π ∈
comp(S), m ≥ 0, and ψ is a path formula:

(S, h) |= p iff last(h) ∈ λ(p), for p ∈ AP .
(S, h) |= ¬ϕ iff (S, h) 6|= ϕ.
(S, h) |= ϕ1 ∧ ϕ2 iff (S, h) |= ϕi for i ∈ {1, 2}.
(S, h) |= 〈〈A〉〉ψ iff for some joint strategy σA ∈ Σ(S),

(S, π, |h| − 1) |= ψ for all π ∈ out(h, σA).
(S, h) |= Kaϕ iff for every history h′ ∈ hist(S),

h′ ≡a h implies (S, h′) |= ϕ.
(S, h) |= CAϕ iff for every history h′ ∈ hist(S),

h′ ≡C
A h implies (S, h′) |= ϕ.

(S, h) |= DAϕ iff for every history h′ ∈ hist(S),
h′ ≡D

A h implies (S, h′) |= ϕ.

(S, π,m) |= ϕ iff (S, π≤m) |= ϕ, for ϕ a history formula.
(S, π,m) |= ¬ψ iff (S, π,m) 6|= ψ.
(S, π,m) |= ψ1 ∧ ψ2 iff (S, π,m) |= ψi for i ∈ {1, 2}
(S, π,m) |= Xψ iff (S, π,m+ 1) |= ψ.
(S, π,m) |= ψ1 Uψ2 iff for some j ≥ m, (S, π, j) |= ψ2, and

for all k with m ≤ k < j, we have
(S, π, k) |= ψ1.

For a history formula ϕ, write S |= ϕ to mean that (S, s) |=
ϕ for every s ∈ S0.

We isolate some important fragments.

1. The fragment ATLK,C,D consists of history formulas ϕ
defined by the grammer above, except with the follow-
ing path formulas: ψ ::= Xϕ | ϕUϕ

2. The fragment ATL (resp. ATL∗) consists of formulas
of ATLK,C,D (resp. ATL∗K,C,D) that do not mention epis-
temic operators.

3. The CTL operator E (resp. A) is definable in ATL∗ by
[[∅]] (resp. 〈〈∅〉〉). In particular, CTL∗K,C,D is a syntac-
tic fragment of ATL∗K,C,D. The fragment of CTL∗K,C,D
consisting of formulas of the form Aψ, where ψ is a
path formula, is denoted LTLK,C,D. Finally, LTL is the
fragment of LTLK,C,D that does not mention epistemic
operators.

Remark 1. The definition of the semantics of 〈〈A〉〉ψ is
the “objective” semantics of 〈〈A〉〉, and captures the idea that
a designer is reasoning about the existence of strategies. On
the other hand, “subjective” semantics capture the idea that
agents themselves are reasoning about the existence of strate-
gies [31]. In Section 3.1 we define subjective semantics and
extend our main result to deal with these.

Model Checking. We state the main decision problem of
this work.

Definition 4 (Model Checking). Let C be a class of
iCGS and F a sublanguage of ATL∗K,C,D. Model checking C
against F specifications is the following decision problem:
given S ∈ C and ϕ ∈ F as input, decide whether S |= ϕ.

Model checking is undecidable in general. Actually, it is
undecidable even if C consists of all iCGS with |Ag| = 3
and F consists of the single formula 〈〈{1, 2}〉〉G p, see [6]. In
Section 3 we prove that model checking PA-iCGS against
ATL∗K,C,D specifications is decidable.

2.3 Examples
We illustrate this definition with two scenarios: the epis-

temic puzzle of the muddy children [8], and a generalisation
of the game Battleships to multiple players. We model (or
sketch) the scenario as an iCGS only having public actions,
and supply representative formulas of ATL∗K,C,D.
Muddy Children. We express this classic puzzle, as pre-
sented, e.g., in [8], in slightly different terms. There are n
children, k of them with mud on their foreheads. Each child
can see the forehead (and thus the muddy state) of all the
other children, but not their own. Then the father enters
the scene. The father can see the foreheads of all the muddy
children. Each person can only make truthful statements
about what they know.

The classic question is: what one statement can the fa-
ther make that will lead each muddy child to learn that she
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is indeed muddy. The answer is that the father declares,
assuming that k ≥ 1, that “at least one of you is muddy”.

There are a number of modeling decisions one can make
to formalise this scenario, e.g., we must decide on the exact
set of actions. Let Ag = {F} ∪ {1, 2, · · · , n}. We give the
father two actions, i.e., ActF = {∃m,¬∃m}. We give the ith
child two actions, i.e., Acti = {know muddy,¬know muddy}.
The set of states is S = {0, 1}n× (ACT∪{ε}). If the current
state is (v, J) then vi = 1 (resp. vi = 0) means that the ith
child is (resp. is not) muddy, and J is the most recent joint
action (ε means that no joint action has yet taken place).
The set of initial states is S0 = {0, 1}n×{ε}. The transition
relation simply updates the last joint action: δ((v, J), J ′) =
(v, J ′). The father is perfectly informed so ∼F= {(s, s) :
s ∈ S}, and each child only does not see herself, so ∼i=
{((v, J), (v′, J ′)) :

∧
j 6=i vj = v′j , J = J ′}. Finally, the atoms

are AP = {mi : i ≤ n} ∪ {αa : α ∈ Acta, a ∈ Ag}. Finally,
define λ(mi) = {(s, J) : si = 1} and λ(αa) = {(s, J) :
J(a) = α}. So mi means that the ith child is muddy, and
αa means that agent a’s last action was α ∈ Acta. It is
straightforward to check that we have defined an iCGS only
having public actions.

Define the shorthand formula Kwaφ, read “agent a knows
whether φ”, by the formula Kaφ ∨ Ka¬φ. Consider the for-
mula:

〈〈{f, 1, . . . , n}〉〉[(
∧

G(Xαa → α̂a)) ∧ F(
∧
i≤n

Kwimi)]

where the first conjunction is over a ∈ Ag, α ∈ Acta, and α̂a
is a formula representing the intended meaning of αa, e.g., if
αa = know muddy then α̂a = Kwama. This expresses that
all the agents have a truthful strategy so that eventually
each child will know whether or not she is muddy.

The reader might wonder what would happen if we don’t
explicitly express that the actions are truthful. Consider the
following formula that says that the father has a strategy
such that eventually the children know their muddy state:

〈〈{f}〉〉F
∧
i≤n

Kwimi

This formula is true. Indeed, a strategy for the father is
to play action ∃m at the ith step iff the ith child is muddy.

In the next scenario, what agents see changes over time
(unlike in the muddy children scenario). In both scenarios,
what agents hear gets updated over time.
Battleships. We consider a game of battleships with three
players. Each player has a 10×10-board with numeric coor-
dinates from bottom-left (0, 0) to top-right (9, 9). Initially,
each player can only see her own board. On her board each
player displays her battleships: one carrier of size 5, two
battleships of size 4, three cruisers of size 3, four submarines
also of size 3, and five destroyers of size 2. We assume that
ships are displayed either horizontally or vertically. As is
standard, overlapping is not allowed.

Here we consider a synchronous version of battleships,
structured in 2-phase rounds, where in phase 1 every player
broadcasts the name p of a player and cell (n,m) of p’s
board to attack. Then, in phase 2, the players truthfully
state whether they have been hit or missed and the boards
are updated accordingly. A player is eliminated once all her
ships have been destroyed. The last player standing, if there
is one, wins the game. The relevant atoms in this game are

wini and losei which state whether player i has won or lost.
It is a routine exercise to build an iCGS only having pub-
lic actions from this description. We only mention that the
assumption that players are truthful can be built in to the
iCGS, i.e., by limiting the available actions a player has in
state 2.

Now consider the formula:

〈〈{1, 2}〉〉F〈〈{1, 3}〉〉F(lose2 ∨ 〈〈{1}〉〉Fwin1)

This expresses that player 1 can collude with each of her
enemies, in order to weaken player 2 or win the game.

3. DECIDABILITY OF PA-iCGS
In this section we prove that model checking PA-iCGS

against ATL∗K,C,D specifications is decidable. This should be
contrast with the fact that model checking arbitrary iCGS
against ATL specifications is undecidable [6].

Theorem 1. Model checking PA-iCGS against ATL∗K,C,D
specifications is 2exptime-complete.

The bulk of this section is devoted to proving decidability.
We then establish the complexity, and discuss further exten-
sions of the result. Before giving the proof, we introduce an
encoding µ of histories.

Definition 5. Let S be an iCGS. Let µ : S0 × ACT∗ →
hist(S) denote the function mapping (s0, u) to the history
starting at the initial state s0 that results from the sequence
of joint actions u ∈ ACT∗. That is, µ(s0, u) is the history h
such that h0 = s0, hj = δ(hj−1, uj−1) for 1 ≤ j ≤ |u|.

For PA-iCGS, the encoding is actually a bijection:

Remark 2. Let S be a PA-iCGS. Since each ∼a is reflex-
ive, δ(s, ·) : ACT → S is injective for every s ∈ S. Thus,
µ : S0 × ACT∗ → hist(S) is a bijection. In particular, for
every h ∈ hist(S) and s ∈ S0 there exists a unique u ∈ ACT∗

such that µ(s, u) = h. This bijection allows us to encode
histories of S by (unique) elements of S0 × ACT∗.

An immediate consequence of having only public actions,
but one that forms the foundation of our decidability proof,
is that the moment different joint actions are taken, two
histories become distinguishable.

Lemma 1. Let S be a PA-iCGS. For all a ∈ Ag, u, u′ ∈
ACT∗ and s, s′ ∈ S0, if µ(s, u) ≡a µ(s′, u′) then u = u′.

Proof. If µ(s, u) ≡a µ(s′, u′) then |u| = |u′| and, for all
0 ≤ j ≤ |u|, µ(s, u)j ∼a µ(s′, u′)j . By the definition of
having only public actions, uj = u′j for all j < |u|.

We prove Theorem 1 in the rest of this section. We use an
automata-based marking algorithm. Such algorithms have
been successfuly applied to a number of logics, including
CTL∗ [19] and ATL∗ [1] in the perfect information setting.
Automata theory. Since our proof uses an automata-
theoretic approach we now fix notations of word and tree
automata. We remark that we only make use of standard
properties of automata operating on finite words, infinite
words, and infinite trees [20].

A determinstic finite-word automaton (dfw) is a tuple
M = (Σ, S, s0, ρ, F ) where Σ is the input alphabet, S is the
finite set of states, s0 ∈ S the initial state, ρ : S × Σ → S
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the deterministic transition function, and F ⊆ S the set of
final states. The run of M on u ∈ Σ∗ is the finite sequence
s0s1 · · · s|u| where ρ(si, ui) = si+1 for all i < |u|. The au-
tomaton accepts a word u ∈ Σ∗ iff the run of M on u ends
in a final state. A dfw is empty if it accepts no word. A set
of strings X ⊆ Σ∗ is called regular if there is a dfw M that
accepts u ∈ Σ∗ iff u ∈ X.

We also make use of automata operating on infinite words
α ∈ Σω: a deterministic parity word automata (dpw) is a
tuple P = (Σ, S, s0, ρ, c) where all components are as for
dfw except that c : S → Z is the colouring function. The
run of P on α ∈ Σω is the infinite sequence s0s1 · · · such
that ρ(si, αi) = si+1 for all i. The automaton accepts a
word α iff the smallest color k for which there are infinitely
many i with c(si) = k is even (where s0s1 · · · is the run of
M on α).

We also make use of automata operating on trees. A
deterministic parity tree automata (dpw) is a tuple T =
(Σ, D, S, s0, ρ, c) where all components are as for a dpw ex-
cept that D is the finite set of directions, and ρ : S × Σ →
SD. The automaton operates on Σ-labelled D-ary branching
trees, i.e., functions f : D∗ → Σ. A branch of t is an infinite
sequence β ∈ Dω. The run of T in input t is the Q-labeled
D-ary branching tree g : D∗ → Q such that g(ε) = s0 and
g(ud) = ρ(g(u), t(u)). The automaton accepts the tree f iff
for every β ∈ Dω (called a branch), the smallest color k for
which there are infinitely i with g(βi) = k is even.

The classes of dfw and dpw are effectively closed under
the Boolean operations (complementation and intersection).
Also, dfw, dpw and dpt can be effectively tested for empti-
ness. Finally, we make use of the following important fact
connecting linear temporal logic with automata:

Proposition 1 ([35, 29]). Every LTL formula ψ over
atoms AP can be effectively converted into a dpw Pψ with
input alphabet 2AP that accepts a word α ∈ 2AP iff α |=
ψ. Moreover, the dpw has double-exponentially many states
and single-exponentially many colours.

Proof outline. We proceed by induction on the formula ϕ
to be checked. We build a dfw that accepts all encodings
of histories h such that (S, h) |= ϕ. Precisely, we build a
dfw Ms

ϕ that accepts a sequence of joint actions u ∈ ACT∗

iff (S, µ(s, u)) |= ϕ. The atomic case is immediate, and the
Boolean cases follow from the effective closure of dfw under
complementation and intersection. The ϕ = Kaϕ′ case is
done by simulating the dfw M t

ϕ′ for t ∈ S0, and record-
ing whether or not µ(s, u) ∼a µ(t, u); the other knowledge
operators are similar. The strategic operator ϕ = 〈〈A〉〉ψ is
done as follows: first we show that we can assume ψ is an
LTL formula, and then we build a dpw for the formula ψ;
we build the dfw that simulates the dpw, and when the in-
put ends we use a tree automaton to decide if there is a joint
strategy that ensures that the dpw accepts all computations
consistent with that joint strategy.
Generalisation of the labeling function. We first gener-
alise the labeling function of iCGS so that atoms are regular
sets of histories (instead of state labelings).

Definition 6. A generalised iCGS is a tuple

S = 〈Ag,AP , {Acta}a∈Ag, S, S0, δ, {∼a}a∈Ag,Λ〉

where all entries are as for iCGS, except that λ : AP → 2S

is replaced by a function Λ : AP → 2hist(S) such that Λ(p) ⊆

hist(S) is a regular set of histories, i.e., there exists a dfw
over the alphabet S accepting h ∈ hist(S) iff h ∈ Λ(p).

Then, we redefine the atomic case of the semantics of
ATL∗K,C,D: (S, h) |= p iff h ∈ Λ(p). It is immediate that
generalised iCGS are indeed more general than iCGS:

Lemma 2. Let S be an iCGS with labeling function λ.
The generalised iCGS S′ with labeling Λ(p) = {h ∈ hist(S) :
last(h) ∈ λ(p)} has the property that S |= ϕ iff S′ |= ϕ (for
all formulas ϕ of ATL∗K,C,D).

Proof. First, note that Λ(p) is regular since a dfw can
read the history h and store in its state whether or not the
last state it read is in λ(p) or not. Second, the fact that
S |= ϕ iff S′ |= ϕ holds by a straightforward induction on
the structure of ϕ.

A generalised PA-iCGS is a generalised iCGS that only
has public actions, i.e., it satisfies the condition in Defini-
tion 3 (which does not depend on the labeling). For the rest
of the proof we view S as a generalised PA-iCGS.
Inductive Statement. Let S be a generalised PA-iCGS.
For every history formula ϕ and initial state s ∈ S0 we will
build a dfw Ms

ϕ such that for every u ∈ ACT∗,

Ms
ϕ accepts u iff (S, µ(s, u)) |= ϕ.

From this it is easy to get the decidability stated in the
theorem: simply check that ε is accepted by every Ms

ϕ with
s ∈ S0.

We build the dfw Ms
ϕ, simultaneously for all s ∈ S0, by

induction on ϕ.
ϕ is an atom. Say ϕ = p ∈ AP and let s ∈ S0. The
required dfw Ms

ϕ should accept u ∈ ACT∗ iff µ(s, u) is
accepted by the dfw Λ(p). To do this we define Ms

ϕ to
simulate S and the dfw R = (S,Q, q0, ρ, F ) for Λ(p) in
parallel, i.e., by taking a product of S and R. Formally,
define Ms

ϕ = (ACT, S×Q, (ι, q0), τ, F ′) where the transition
function τ maps state (s, q) and input a ∈ ACT to state
(δ(s, a), ρ(q, s)), and the final states F ′ are of the form (s, q)
where ρ(q, s) ∈ F .
ϕ is a Boolean combination. Let s ∈ S0. The Boolean
combinations follow from the effective closure of dfw under
complementation and intersection. Indeed, Ms

¬ϕ is formed
by complementing the final states of Ms

ϕ, and Ms
ϕ1∧ϕ2

is the
product of the Ms

ϕis.
ϕ is of the form Kaϕ′. Let s ∈ S0. By induction, we have
dfw M t

ϕ′ for t ∈ S0. The required dfw should accept a

string u iff, for every t ∈ S0, if µ(s, u) ≡a µ(t, u) then M t
ϕ′

accepts u.
To do this, the dfw will simulate, in parallel, each M t

ϕ′ for
t ∈ S0. This is done by forming their product, i.e., the states
of the product are q : S0 → Q where Q is the union of the
state sets of the M t

ϕ′ for t ∈ S0, and there is a transition in

the product from q to q′ on input J ∈ ACT if for each t ∈ S0

there is a transition in M t
ϕ′ from q(t) to q′(t) on input J .

Instrument this product by recording, on input u ∈ ACT∗ a
function fu : S0 → S and a set Gu ⊆ S0 with the following
properties:

• fu(t) = last(µ(t, u))

• t ∈ Gu iff for every prefix v of u, fv(s) ∼a fv(t) (thus,
initially Gε = {t ∈ S0 : t ∼a s}, and the moment
fv(s) 6∼a fv(t) we remove t from Gv).
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A state 〈f,G, q〉 is final if, for every t ∈ G it is also the case
that q(t) is a final state of M t

ϕ.
ϕ is of the form CAϕ′. This is identical to the Ka case
except replace ∼a by ∼C

A and replace ≡a by ≡C
A.

ϕ is of the form DAϕ′. This is identical to the Ka case
except replace ∼a by ∼D

A and replace ≡a by ≡D
A.

ϕ is of the form 〈〈A〉〉ψ. We proceed in two steps. First,
we show how to linearise path formulas, and then we show
how to encode strategies as trees so that we can build the
promised dfw.
Linearising path formulas. One can think of an ATL∗K,C,D
path formula ψ as an LTL formula lin(ψ) over a fresh set of
atoms max(ψ), the maximal history subformulas of ψ. This
translation of ATL∗K,C,D path formulas to LTL formulas does
not make use of the assumption that the iCGS S only has
public actions, and it is analogous to the translation of ATL∗

(or CTL∗) path formulas to LTL formulas over maximal state
subformulas [19, 1].

We briefly discuss the translation. Let max(ψ) be the set
of history subformulas of ψ that are maximal, i.e., a history
formula ϕ ∈ max(ψ) iff it occurs in ψ and that occurence is
not a subformula of any other occurence of a history subfor-
mula of ψ. If ψ is a path formula, define lin(ψ) to be the LTL
formula where for each ϕ ∈ max(ψ) there is a fresh atom
ϕ such that every occurence of ϕ in ψ is replaced by ϕ .

For example, consider ψ = (pU〈〈A〉〉Kap) ∨ X¬CAp. The
history subformulas of ψ are {p, 〈〈A〉〉Kap,Kap,¬CAp,CAp}.
Then max(ψ) = {p, 〈〈A〉〉Kap,¬CAp}.1 Thus lin(ψ) is the

LTL formula
(
p U 〈〈A〉〉Kap

)
∨ X ¬CAp over the atoms

ϕ for ϕ ∈ max(ψ). Since, by induction, we have built

dfw for each boxed atom, for the remainder of the proof we
assume that ψ is an LTL formula.
Construction of Ms

〈〈A〉〉ψ for an LTL formula ψ. We will
build a dpw Eψ,s over ACT that accepts α ∈ ACTω iff
(S, µ(s, α)) |= ψ. The promised dfw Ms

〈〈A〉〉ψ reads u ∈
ACT∗ and simulates Eψ,s. Suppose after reading u the state
of Eψ,s is q. Then Ms

〈〈A〉〉ψ accepts, i.e., q is defined to be
a final state of Ms

〈〈A〉〉ψ, iff there exists uniform σA such
that for every α ∈ ACTω, if µ(s, u · α) ∈ out(S, µ(s, u), σA)
then α is accepted by Eψ,s starting from state q (and thus
(S, µ(s, u)) |= 〈〈A〉〉ψ, as required). These latter realisability
problems (one for each q) are solved offline by constructing
dpt Fψ,s,q and testing them for non-emptiness. We now
show how to build the automata Eψ,s and Fψ,s,q.
Construction of dpw Eψ,s. To build Eψ,s, begin by writing
AP (ψ) for the finite set of atoms appearing in ψ. First,
for each p ∈ AP (ψ), let Dp be a dfw for the regular set
{u ∈ ACT∗ : µ(s, u) ∈ Λ(p)}. Second, by Proposition 1,
every LTL formula ψ can be converted into a dpw Dψ over
alphabet 2AP that accepts all word models of that formula.
Let Qψ be the states and ∆ψ : Qψ × 2AP (ψ) → Qψ the
transition of the dpw. Now, the dpw Eψ,s simulates Dψ
and each dfw Dp. The automaton does this by storing and
updating a state qu ∈ Qψ and a function fu such that fu(p)
is the state of Dp (i.e., fu : AP (ψ)→ Q where Q is the union
of states of the Dps). Transitions of Eψ,s are as follows: from
state 〈qu, fu〉 and input d ∈ ACT the next state 〈qud, fud〉
satisfies that qud = ∆ψ(qi, Z) where p ∈ Z iff fu(p) is a final
state of Dp, and fud(p) is the state resulting from applying

1Note that although p has a non-maximal occurence in ψ,
it is included in max(ψ) since it has at least one occurence
which is maximal, i.e., on the left-side of U.

the transition function of Dp to the state fu(p) and input d.
Define the colour of 〈q, f〉 to be the same as the colour in Dψ
of the state q, and 〈q, f〉 is an initial state if q is an initial
state in Dψ. The following is straightforward to prove:

Lemma 3. The dpw Eψ,s accepts α ∈ ACTω if and only
if (S, µ(s, α)) |= ψ.

Construction of dpt Fψ,s,q. To solve the synthesis problem
we will encode strategies as trees and use tree-automata.
Encode a strategy σ of agent a by the ACT-branching tree

Tσ : ACT∗ → (Acta)S0

where, for u ∈ ACT∗, Tσ(u)(t) = σ(µ(t, u)). By Lemma 1,
σ is uniform iff Tσ satisfies the property

µ(t, u) ≡a µ(t′, u)⇒ Tσ(u)(t) = Tσ(u)(t′) (1)

Lemma 4. The set of encodings Tσ of uniform strategies
σ of agent a is recognised by a dpt.

Proof. To do this, it is sufficient to build a dpt that
accepts a tree T iff T has property (1). Informally, for every
pair of different states t, t′ ∈ S0, the dpt keeps a bit that is
initialised to 1 (signifying that it must verify that T (u)(t) =
T (u)(t′)), and as soon as it finds that µ(t, u) 6≡a µ(t′, u) it
sets the bit to 0, which signals that it no longer has to ensure
Tσ(u)(t) = Tσ(u)(t′).

Encode a set of uniform strategies σA (for A ⊆ Ag) as the
convolution TσA of their individual encodings, i.e.,

TσA : ACT∗ →
∏
a∈A

(Acta)S0

where TσA(u)(a) = Tσa(u). Running the automata for σa
in parallel yields:

Lemma 5. For every A ⊆ Ag, the set of encodings of
joint uniform strategies σA is recognised by a dpt.

Finally, in order to solve the synthesis problem for state
q, we define a dpt Fψ,s,q that accepts TσA iff for every α ∈
ACTω, if µ(s, α) is consistent with σA then α is accepted by
Eψ,s starting from q.

The dpt Fψ,s,q works as follows: it reads TσA as input
and, on every branch α ∈ ACTω of the tree, simulates Eψ,s
starting from q, and accepts that branch if both Eψ,s is
accepting and µ(s, α) is consistent with σA. This can be
done by a tree-automaton because a) Eψ,s is deterministic
and thus it can be run on all paths of the tree (i.e., this
step would not be possible if Eψ,s were a non-deterministic
automaton); and b) checking if µ(s, α) is consistent with σA
is simply a matter of checking that α0(a) = σA(a)(s) and
αi+1(a) = σA(a)(µ(s, α≤i)), for every i ∈ N and a ∈ A.
Final states of dfw Ms

〈〈A〉〉ψ. Finally, define the state q of
Ms
〈〈A〉〉ψ to be a final state iff the dpt Fψ,s,q is non-empty (a

decidable condition).
This completes the construction of Ms

〈〈A〉〉ϕ, and the proof
of decidability.

3.1 Complexity
In this section we analyse the complexity of our decision

procedure for a fixed number of agents. We then establish
the lower bound by a reduction from a problem known to
be 2exptime-hard.

First, we calculate ||ϕ||, the number of states of Ms
ϕ, for

each case:
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1. Atomic: ||p|| = O(1) for p ∈ AP .

2. Negation: ||¬ϕ|| = ||ϕ||.

3. Conjunction: ||ϕ ∧ ϕ′|| = ||ϕ|| × ||ϕ′||.

4. Epistemic: ||Kaϕ|| = (2× |S| × ||ϕ||)|S|, and the same
for ||CAϕ|| and ||DAϕ||.

5. Strategic: ||〈〈A〉〉ψ|| = 22O(|lin(ψ)|)
× ||ψ̃|||AP (lin(ψ))| ×

O(2|S|
2

) where lin(ψ) is the linearisation of ψ, ψ̃ is the
largest history subformula of ψ, and AP (·) is the set
of atomic predicates occuring in its argument.

The last case requires some explanation. The dpt accepting

the set of all joint-strategies σA has size O(2|S|
2

), and has
two colours. The dpw Dψ has double-exponentially many
states and single-exponentially many colours (in the size of

lin(ψ)) [35, 29]. The dpw Eψ,s has 22O(|lin(ψ)|)
× ||ψ̃||AP (ψ)

many states. The dpt Fψ,s,q has 22O(|lin(ψ)|)
× ||ψ̃||AP (ψ) ×

O(2|S|
2

) many states and 2O(|lin(ψ)|) many colours. This
gives the stated value of ||〈〈A〉〉ψ||.

Second, we calculate the time for constructing the dfw
Ms
ϕ. In the first four cases this cost is polynomial in the size

of the dfw, i.e., ||ϕ||. For the strategy case we incur a cost
to calculate the final states, i.e., solving the emptiness of
the dpt Fψ,s,q. The cost of solving the emptiness of a dpt

with n states and m colours is at most nO(m) [16]. Thus,

the time for constructing Ms
ϕ is at most nO(m) where n =

22O(|lin(ψ)|)
× ||ψ̃||AP (lin(ψ)) ×O(2|S|

2

) and m = 2O(|lin(ψ)|).
Finally, let z = |S|+ |ϕ|. The time for constructing Ms

ϕ of

each step of the procedure can be bounded above by 22O(z)

×
|Λ|2

O(z)

where |Λ| is the size of the largest dfw representing
atoms of the generalised PA-iCGS (a maximum exists since
AP is finite). Since there are at most z such steps, the time
for constructing, and thus the size, of the resulting dfw is

22O(z2)

. Testing if ε is accepted by this automaton has no
additional cost. Thus, our algorithm runs in 2exptime.
Lower-Bound. To prove the lower bound in Theorem 1 we
reduce from a known 2exptime-hard problem, i.e., model
checking a CGS with Ag = {a, b} against a formula of the
form 〈〈{a}〉〉ψ for an LTL formula ψ [27, 28]. One can trans-
late a two-player CGS S into a polynomially larger CGS
S′ with public actions such that S |= ϕ iff S′ |= ϕ. In-
deed, the agents, actions, and atoms are the same, S′ =
S × (ACT ∪ {ε}), S′0 = S0 × {ε}, δ′((s, d), d′) = (δ(s, d′), d′),
and λ′(p) = {(s, d) : s ∈ λ(p)} (note that because S has two-
players, |ACT| = |Act1| × |Act2|, and thus |S′| is polynomial
in the size of S).

3.2 Subjective Semantics
In this section we show that our result still holds if we use

subjective semantics instead of objective semantics.
Our definition of semantics of 〈〈A〉〉ψ is called “objective”

(see Remark 1). An alternative definition is called “sub-
jective”: replace “for all π ∈ out(h, σA)” by “for all π ∈⋃
a∈A,h′≡ah out(S, h

′, σA)” in the semantics (S, h) |= 〈〈A〉〉ψ.
Subjective semantics expresses, intuitively, that the agents
A know that a given strategy will guarantee a certain out-
come. We remark that in this case Ka is definable in terms
of 〈〈A〉〉, i.e., 〈〈a〉〉ϕUϕ.

The decidability proof of Theorem 1 is for objective se-
mantics. To deal with subjective semantics proceed as fol-
lows. For u ∈ ACT∗ let T su ⊆ S0 be the set of t such that
there exists a ∈ A with t ≡a s. The dfw Ms

〈〈A〉〉ψ simulates
Eψ,t for all t ∈ T sε . After reading u, each automaton Eψ,t
for t ∈ T su is in some state, say qt. The dfw is required
to accept u iff there exists a joint strategy σA such that for
every α ∈ ACT∗ and t ∈ T su , if µ(t, u ·α) ∈ out(S, µ(t, u), σA)
then α is accepted by Eψ,t starting from qt. In order to de-
cide the right-hand side we build the dpt Fψ,t,qt for t ∈ T su
(as we did above for s). Then we check if the intersection of
the automata Fψ,t,qt (for t ∈ T su) is non-empty.

4. COMPARISON WITH BROADCAST EN-
VIRONMENTS

The work most closely related to ours is [33] in which the
authors show that one can decide if a given formula of knowl-
edge and linear-time, which we denote LK, is realisable (by a
tuple of uniform strategies) assuming that the environment
is a “broadcast environment”. In this section we denote the
logic from [33] by LK.

The relationship with [33] is twofold: i) the realisability
problem for LK can be reduced to model checking ATL∗K
specifications, and ii) our notion of “having only public ac-
tions” (Definition 3) is orthogonal to “broadcast environ-
ments”. We now supply the justifications for i) and ii).
i) LK realisability can be reduced to model-checking ATL∗K.
We show how to reduce the realisability problem for LK to
the model checking problem for ATL∗K. To do so, we first
recall the syntax and semantics of LK from [33]. The syntax
is defined as the set of formulas ψ generated by the following
grammar:

ψ ::= p | ¬ψ | ψ ∧ ψ | Xψ | ψUψ | Kaψ

where p ∈ AP , a ∈ Ag, and A ⊆ Ag is non-empty.
The semantics |=LK is defined over (S, π,m) where S is an

iCGS, π ∈ comp(S) and n ∈ N. We denote the satisfication
relation |=LK to distinguish it from |=. The Boolean and
temporal operators are as usual:

(S, π,m) |=LK p iff πm ∈ λ(p)
(S, π,m) |=LK ¬ψ iff (S, π,m) 6|=LK ψ
(S, π,m) |=LK ψ1 ∧ ψ2 iff (S, π,m) |=LK ψi for i ∈ {1, 2}
(S, π,m) |=LK Xψ iff (S, π,m+ 1) |=LK ψ
(S, π,m) |=LK ψ1 Uψ2 iff for some j ≥ m, (S, π, j) |=LK ψ2,

and for all k with m ≤ k < j,
(S, π, k) |=LK ψ1

The epistemic operator Ka is follows:

(S, π,m) |=LK Kaψ iff (S, π′,m′) |=LK ψ for all π′ ∈ comp(S)
such that π≤m ≡a π′≤m′ (in particular, m = m′).

An LK-formula ψ is realisable if there exists a uniform
strategy σA such that for all s0 ∈ S0 and all π ∈ out(S, s0),
we have that (S, π, 0) |= ψ.

We now present the reduction. Let ψ be a formula of LK.
Define ψ̂, a path formula of CTL∗K, by recursively replacing
Kaψ by Ka A ψ̂. We claim that for all iCGS S, ψ is realisable
in S iff S |= 〈〈Ag〉〉ψ̂. To see this it is sufficient to estab-
lish the following inductive hypothesis: (S, π,m) |=LK ψ iff

(S, π,m) |= ψ̂. To prove the inductive hypothesis use that
the following are equivalent to (S, π,m) |=LK Kaψ:
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1. (S, π′,m) |=LK ψ for all π′ ∈ comp(S) such that π′≤m ≡a
π≤m (by the definition of |=LK);

2. (S, π′,m) |= ψ̂ for all π′ ∈ comp(S) such that π′≤m ≡a
π≤m (by the inductive hypothesis);

3. (S, π,m) |= Ka A ψ̂ (by definition of |=).

ii) Broadcast environments and PA-iCGS are incompara-
ble. We briefly describe how [33] models “broadcast envi-
ronment”. That work defines an interpreted systems (see
[8] for background on these) in which each agent’s local
state consists of a private part (that only depends on its
local actions) and a shared part (that depends on the joint
actions, but that is the same for all agents). In our ter-
minology a broadcast environment is an iCGS with Ag =
{e, 1, 2, · · · , n} whose state set is of the form S = Le ×∏
i≤n Li (for some finite sets La for a ∈ Ag), and whose tran-

sition maps state (le, l1, · · · , ln) and joint-action J ∈ ACT to
the state (τe(le, J), τ1(l1, J(1)), · · · , τn(ln, J(n))) where τe :
Le×ACT→ Le and τi : Li×Acti → Li are functions (simi-
lar to the evolution functions in interpreted systems), except
that Li for i 6= e does not depend on joint-actions, only on lo-
cal actions). Finally, define (le, l1, · · · , ln) ∼i (l′e, l

′
1, · · · , l′n)

iff li = l′i and F (le) = F (l′e) where F : Le → O is a function
mapping environment states to some fixed set O of observa-
tions (note that F and O are independent of i, and thus all
agents have the same observation of the environment).

Now, the set of PA-iCGS is incomparable (wrt. subset)
with these iCGS. On the one hand, setting Le = ACT = O
and F to be the identity function, results in an iCGS having
only public actions. On the other hand, we allow Li to
depend on the joint-actions (not just the local actions).

5. CONCLUSIONS
In this paper we put forward a class of CGS with imperfect

information, namely the iCGS only having public actions,
which admit a decidable model checking problem, even in
the presence of perfect recall. This is in contrast with the
fact that even realisability of safety properties on arbitrary
iCGS is undecidable [6]. Specifically, we considered a rich
formal language to express complex strategic and epistemic
properties of agents in MAS. This is the extension ATL∗K,C,D
of the alternating-time temporal logic ATL∗, with operators
for individual, common, and distributed knowledge. We pro-
vided these languages with a semantics in terms of iCGS,
according to both the objective and subjective interpreta-
tion of ATL modalities. Most importantly, we identified a
subclass of iCGS – those having only public actions, or PA-
iCGS – for which we were able to prove that the model-
checking problem is decidable. The interest of these results
lies in the fact that PA-iCGS capture many important MAS
scenarios, including certain games of imperfect information,
epistemic puzzles, blackboard systems, face to face commu-
nication, etc. Indeed, all scenarios mentioned in previous
work on broadcast environments [23, 33] can be captured by
PA-iCGS.

A number of extensions of ATL∗ have been proposed in
order to express classic solutions concepts (like Nash Equi-
libria) [12, 13, 24, 25]. The decidability of model checking
PA-iCGS against epistemic extensions of these strategy log-
ics is currently unexplored.

Notwithstanding their generality, there are many features
of MAS that are not naturally expressed within PA-iCGS or
broadcast environments. We discuss some of them:
Asynchronous recall. Social media like Twitter make use
of public actions, but are more naturally modeled as asyn-
chronous MAS (rather than synchronous systems, as we do).
Bounded-recall. Games like Bridge and Stratego are inter-
esting to play in part because humans have to remember
some of the history of a play, a feature that might be mod-
eled by bounded recall (rather than perfect recall). How-
ever, restricting agents to finite-memory strategies also re-
sults in undecidability on arbitrary iCGS [36]. On the other
hand, our proof implies that if a formula 〈〈A〉〉ψ is true then
there are finite-memory strategies witnessing this fact, and
if a formula Kaϕ is true then there is a finite-state machine
that accepts exactly the histories making Kaϕ true. This
suggests that our results can be used to model agents of
bounded-recall.
Probabilities. Several scenarios, such as card games and se-
curity protocols, involve probability either at the level of the
iCGS or at the level of strategies.

In future work we plan to investigate the points raised
above, as well as to develop optimal model checking algo-
rithms for fragments of ATL∗K,C,D and to implement them in
an extension of the MCMAS tool for MAS verification [22].
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